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Abstract

This paper reviews the rapidly expanding literature on the ecological ef-
fects of cyanobacterial toxins. The study employs a qualitative meta—
analysis from the literature examining results from a large number of inde-
pendent studies and extracts general patterns from the literature or signals
contradictions. The meta—analysis is set up by putting together two large
tables — embodying a large and representative part of the literature (see
Appendix A). The first table (Table A.1) reviews the presence (concentra-
tions) of different cyanobacterial toxins in the tissues of various groups of
aquatic biota after exposure via different routes, experimentally in the lab
or via natural routes in the environment. The second table (Table A.2) re-
views the dose dependent effect of toxins on biota. The great majority of
studies deal with the presence and effects of microcystin, especially of the
MC-LR congener. Although this may partly be justified — MC-LR is an
abundant and highly toxic protein — our review also emphasizes what is
known about (i) other MC congeners (a number of studies showed a pre-
ferred accumulation of the less toxic variant MC—RR in animal tissues),
(i1) nodularin (data on a range of biota from studies on the Baltic Sea), (iii)
neurotoxins like anatoxin—a(s), which are conspicuously often present at
times when mass mortalities of birds occur, (iv) a few studies on the pres-
ence and effects of cylindrospermposin, as well as (v) the first examples of
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ecological effects of newly identified bioactive compounds, like microvir-
idin—J. Data were reorganized to assess to what extent bioconcentration
(uptake and concentration of toxins from the water) or biomagnification
(uptake and concentration via the food) of cyanobacterial toxins occurs in
ecosystems. There is little support for the occurrence of biomagnification,
and this reduces the risk for biota at higher trophic levels. Rather than
biomagnification biodilution seems to occur in the foodweb with toxins be-
ing subject to degradation and excretion at every level. Nevertheless toxins
were present at all tropic levels, indicating that some vectorial transport
must take place, and in sufficient quantities for effects to possibly occur.
Feeding seemed to be the most important route for exposure of aquatic bi-
ota to cyanobacterial toxins. A fair number of studies focus on dissolved
toxins, but in those studies purified toxin typically is used, and biota do not
appear very sensitive to this form of exposure. More effects are found
when crude cyanobacterial cell lysates are used, indicating that there may
be synergistic effects between different bioactive compounds. Aquatic bi-
ota are by no means defenseless against toxic cyanobacteria. Several stud-
ies indicate that those species that are most frequently exposed to toxins in
their natural environment are also the most tolerant. Protection includes
behavioral mechanisms, detoxication of MC and NODLN by conjugation
with glutathione, and fairly rapid depuration and excretion. A common
theme in much of the ecological studies is that of modulating factors. Ef-
fects are seldom straightforward, but are dependent on factors like the
(feeding) condition of the animals, environmental conditions and the his-
tory of exposure (acclimation and adaptation to toxic cyanobacteria). This
makes it harder to generalize on what is known about ecological effects of
cyanobacterial toxins. The paper concludes by summarizing the risks for
birds, fish, macroinvertebrates and zooplankton. Although acute (lethal)
effects are mentioned in the literature, mass mortalities of — especially —
fish are more likely to be the result of multiple stress factors that co—occur
during cyanobacterial blooms. Bivalves appear remarkably resistant, whilst
the harmful effects of cyanobacteria on zooplankton vary widely and the
specific contribution of toxins is hard to evaluate.
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List of abbreviations.

Abbreviation Definition

AchE Acetyl Choline Esterase

ANA(a)(as) Anatoxin—a; anatoxin—a(s)

BCF Bioconcentration Facor (concentration of toxic compound in
an organism as % of that in water)

BMF Biomagnification Factor (concentration of toxic compound in
an organism as % of that in its diet)

CAT Catalase (one of the antioxidative enzymes)

CYN Cylindrospermopsin

GI Gastrointestinal tract

GPx Glutathione Peroxidase (one of the antioxidative enzymes)

GR Glutathione Reductase (one of the antioxidative enzymes)

GSH Glutathione

GST Glutathione—S—Ttransferase (catalyst of the formation of MC—
GSH conjugates in detoxication)

H,0, Hydrogen peroxide (one of the ROS formed during oxidative
stress)

HP Hepatopancreas

1P Intraperitoneal injection

LCs Concentration at which 50 % of the test animals die from ex-
posure to the toxin

LOEC Lowest Observable Effect Concentration

LPO Lipid Peroxidation (outcome of oxidative stress)

LPS Lipopolysacharides

MC Microcystin

NODLN Nodularin

PP Protein phosphatases (inhibition of PP by MC results in hy-
perphosphorilation of proteins)

PST Paralytic Shellfish Toxin

ROS Reactive Oxygen Species (formed during oxidative stress)

SAX Saxitoxin

SOD Super Oxide Dismutase (one of the antioxidative enzymes)

TDI Tolerable Daily Intake (of a toxin like MC)

TEH Total Extractable Hepatotoxins (sum of toxins and their bio-
transformation products)

TOSC Total Oxygen Scavenging Capacity
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Introduction

Until just a few years ago statements like “traditionally research has fo-
cused on the acute toxicity of microcystin—LR to laboratory mammals” and
“there is a general lack of research involving aquatic organisms which may
be exposed to toxin producing cyanobacterial blooms in their natural envi-
ronment” (Zurawell et al. 1999) were fully justified. In contrast, there now
exists a large literature from observational and experimental studies deal-
ing with cyanobacterial toxins in aquatic systems. Yet major information
gaps remain, and our ability to understand effects is limited by certain at-
tributes of those studies. The aim of this paper is to review the extant lit-
erature, identify general patterns in results, and identify key areas where
additional research is warranted.

This assessment is complex because in addition to microcystin—-LR there
are many other toxins produced by cyanobacteria. Some of these toxins,
such as nodularin, are closely related to microcystin, while others are quite
different (e.g., the neurotoxins anatoxin—a and a(s) and saxitoxin and the
protease inhibitor cylindrospermopsin). There also exists an ever increas-
ing list of bioactive compounds produced by cyanobacteria, some of which
have been shown to be toxic to selected aquatic biota (like microviridin—J
for Daphnia (Rohrlack et al. 2004), but many of which have not been stud-
ied in any detail. Furthermore, chronic and sub—chronic effects (see Ha-
vens et al elsewhere in this volume for definitions) may be more relevant
to study than acute lethal effects. Exposure of biota in lakes supporting
cyanobacterial blooms is likely to be repetitive and over much of an organ-
ism’s lifespan. Although cyanobacterial toxins have been claimed to play a
role in acute events like mass mortalities of fish and birds, there is usually
insufficient evidence to link fish and bird kills directly to these toxins. This
does not mean that there are no important sub—lethal effects resulting from
chronic exposure in the aquatic ecosystem.

This study employs qualitative meta—analysis of data from the literature,
examining results from a large number of independent studies and synthe-
sizing summaries and conclusions addressing the issue of toxic effects.
Meta—analysis aims to utilize the increased power of pooled data to clarify
the state of knowledge on that issue, and may include quantitative statisti-
cal analyses when the data are consistent with that approach — this is not
the case here. We set up the meta—analysis by putting together two large
tables (see Appendix A). The first table (Table A.1) reviews the presence
(concentrations) of cyanobacterial toxins in the tissues of aquatic biota af-
ter exposure via different routes, be it experimental or via natural routes in
the field. The second table (Table A.2) reviews the dose dependent effects
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of toxins on biota. While Tables A.1 and A.2 do not include 100% of the
published papers on these subjects, they do embody a large and representa-
tive part of the literature.

Methodology

The literature was queried using the ISI-Web of Science. Results of the
literature search are given in Havens et al (this volume). To assemble Ta-
ble A.1 — concentrations in biota — the following data were extracted from
the literature: (i) biota involved, four groups are distinguished: birds, fish,
macroinvertebrates and zooplankton); (ii) type of cyanobacterial toxin
studied; (iii) exposure route; (iv) toxin concentrations in biota; (v) concen-
tration in the source (i.e. this could be dissolved purified toxin in an ex-
perimental setting, cells from cultures of toxic cyanobacteria or natural
seston containing toxic cyanobacteria); and (vi) analytical analysis method
that was used to quantify the toxin. In the discussion, data from Table A.1
will be organized in such a way that biomagnification (accumulation of the
toxins in biota via consumption of food that contains the toxins) can be
quantified. Bioaccumulation of cyanobacterial toxins is often speculated to
increase the risk of exposure for aquatic biota (especially at higher trophic
levels), but bioaccumulation has seldom been analyzed correctly (see Ha-
vens et al, this volume for definitions). Especially for MC it is well known
that the analytical method may have a marked effect on the concentration
that is measured. This is even more so when MC is measured in biota,
rather than in the toxin producing cyanobacteria. Standard MeOH extrac-
tion does not include covalently bound MC and analysis using ELISA suf-
fers from cross reactivity between MC or NODLN and their GSH conju-
gates formed in detoxication. The consequences of this for interpretation of
the concentrations given in Table A.1 are discussed.

For Table A.2 the following data were compiled: (i) biota involved; (ii)
exposure route; and (iii) dose and effect. In many studies it is not possible
to establish true dose—effect relationships because organisms are exposed
to only one or two different dosages, and Table A.2 will indicate in which
cases sufficient data have been gathered to establish a relationship. Ideally
the unit for dose would be units of toxin administered per unit of body
weight and per unit of time (for comparison TDI for humans equals a dose
of 0.04 pg kg bw™). It is more common however to find toxin contents of
the source expressed in pug L. Differences in units hamper interpretation
across different studies. What will also emerge from Table A.2 is that the
exposure route has a strong influence on biological effects. In fish IP injec-
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tion of MC is often fatal however oral dosage hardly ever results in mortal-
ity. As will be discussed, fish—kills in lakes seem to be a consequence of
multi—stress factors during blooms of toxic cyanobacteria rather than of di-
rect intoxication. Tables A.1 and A.2 are included as an appendix of this

paper.

Results and Discussion

The last 5 years have included a steady increase in the number of papers
investigating cyanobacterial toxins in aquatic biota. Whether this increas-
ingly large body of literature is sufficiently broad (in terms of the toxins /
bioactive compounds and aquatic biota covered by the studies) and deep
(in terms of yielding a detailed understanding of the effects these toxins
have on aquatic biota) is another matter. Below we formulate an answer to
this question — which is central to this paper — by analyzing the assembled
literature presented in the tables.

Toxins in biota

Toxin producing species and their toxins

This review takes a somewhat unusual perspective in that the focus is not
on toxin producing cyanobacteria but rather on the biota in the aquatic eco-
system that may be affected by the toxins. Cyanobacteria that (frequently)
appear in the tables are the MC producing genera Microcystis (species M.
aeruginosa, M. flos aquae and M. viridis) and Planktothrix (P. agardhii
and P. rubescens), the main NODLN producing species Nodularia spumi-
gena and the anatoxin—a and a(s) producing genus Anabaena. Although
species within a genus may differ greatly in their ecology (P. agardhii for
instance is commonly found in hypertrophic, turbid shallow lakes, whereas
P. rubescens is typically found in clear, deep alpine lakes), we do not
stress differences between toxin producers at the species level since often
we know little about differences in toxin production within a genus like for
instance Microcystis.

If there is one thing immediately striking about the tables it is the
prominence of MC, especially of MC-LR (not all studies specify which
MC congeners were present, although most studies express total MC as
MC-LR equivalents since often MC-LR is the only standard used in
HPLC analysis). This focus on the presence and effects of MC is probably
(partly) justified because surveys of cyanobacterial toxins in several coun-
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tries have indeed shown that microcystins are prominently present (e.g. in
Denmark — Henriksen et al. 1997). The spotlight on MC-LR (one variety
in a family of around 70 different MC congeners) may be more biased, and
seems influenced by the laboratory work on mammals. MC-LR is rela-
tively toxic, its LDs, in mice is 50 pg kg™, considerably lower than for in-
stance the LDsy of MC—RR (600 pg kg (Spoof 2005). Yet as the data in
Table A.1 indicate there are a number of studies demonstrating that espe-
cially the less toxic MC—RR is taken up into tissues of aquatic biota, for
instance in silver carp (Jang et al. 2004); or in freshwater snails (only MC—
RR present in foot of B.aeruginosa (Chen and Xie 2005) and hepatopan-
creas of S.histrica (Ozawa et al. 2003). On the basis of their observations
on the ratio of MC-LR:MC-RR in different tissues and organs, Xie et al.
(2004) suggested that MC—LR may be actively degraded during digestion,
whereas MC—RR is transported across the intestines and embedded into
body tissues. At the same time Xie suggested that MC—RR is not acutely
toxic to the carp, since no mortality was observed despite the uptake of
MC-RR into various organs. In a study using the Thamnocephalus bioas-
say LCsy of MC-RR (and of MC-YR) was actually very close to the LCsg
of MC-LR. The real difference in this invertebrate was a much gentler
slope of MC—RR compared to MC-LR (and YR) when LC,y and LCy, val-
ues were included (Blom et al. 2001).

A further relevant distinction within the microcystins is that between the
methyldehydroalanine—containing microcystins which covalently bind to
PP in the cell and MC that contains dehydrobutyirine and — like NODLN —
that do not bind covalently to PP. For NODLN it has been suggested that
because NODLN does not bind covalently its transfer in the food web is
facilitated (Kankaanpaa et al. 2001). The same would be true for the dehy-
drobutyirine containing microcystins, but since concentrations of these
have not been analyzed in biota there is no evidence for this. Overall it is
clear that studies on MC—LR cover just a small part of the total complexity
of interactions between microcystin producing cyanobacteria and aquatic
biota, so that the bias indicated by Tables A.1 and A.2 is unjustified. More
research is needed on the ecological effects of the whole spectrum of bio-
active — potentially harmful — compounds produced by cyanobacteria, in-
cluding MC congeners other than LR.

Some toxins other than MC have been analyzed in biota. NODLN fea-
tures fairly prominently in the tables, due to considerable work that has
been done on the Baltic sea. This is one of the few regions in the world
where there are sufficient data to actually follow concentrations of
NODLN and its effects throughout much of the food web (more in discus-
sion on ‘bioaccumulation’). Neurotoxins are not a notable group in the ta-
ble. Interestingly anatoxins (anatoxin—a and/or anatoxin—a(s)) often seem
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to play a role when toxic cyanobacteria have been implicated in the death
of waterfowl (Henriksen et al. 1997; Krienitz et al 2003). Neurotoxicosis
can be seen as convulsed extremities and arched back necks (Codd et al.
2005). The death of the lesser flamingos in Africa’s Rift valley lakes is an
interesting example where multiple cyanobactertial toxins (neurotoxins
and hepatoxins) may play a simultaneous role and have synergistic effects
(a more accurate description of the interaction between different toxins or
toxins and other stress factors may be additive rather than synergistic ef-
fects). This is another area where very little is known today.

Biota involved and organs affected

Tables A.1 and A.2 distinguish four groups of aquatic organisms: water-
fowl, fish, macroinvertebrates (i.a. bivalves, crabs, prawns, snails) and
zooplankton. There are only a handful of studies involving birds (see
above). There are many more studies on fish, the other group of aquatic
vertebrates where mass mortalities have been attributed to blooms of toxic
cyanobacteria. Toxins in fish have been analyzed after exposure via differ-
ent routes, but the majority of work actually involves studies of fish caught
in lake or sea, i.e. fish that has been exposed to toxins via natural routes
(exposure through the food web or to dissolved toxins after lysis of
blooms). In the ecosystem the feeding guild of a fish species appears to be
a primary determinant of exposure to toxins. Phytoplanktivorous fish like
silver carp (e.g. Jang et al. 2004) directly consume cyanobacteria. Zoo-
planktivorous fish like sticklebacks and smelt (Ibelings et al. 2005) feed on
zooplankton that directly consume cyanobacteria. Likewise a species like
flounder predates on filter feeding blue—mussels. Piscivorous fish that prey
on zooplanktivorous fish are one step further removed from the toxin pro-
ducing cyanobacteria. It may be expected that in the absence of biomag-
nification (but see discussion below) MC concentrations decrease in the
order phytoplanktivorous > zooplanktivorous > piscivorous fish

Omnvirous fish may fit in anywhere. Indeed fish caught in the [Jsselmeer,
The Netherlands showed an increase in MC in fish-liver moving from lar-
ger perch (predatory) to ruffe (benthic) and zooplanktivorous smelt (Ibel-
ings et al. 2005). In contrast Xie et al. (2005) found that MC in various tis-
sues and organs varied as carnivorous > omnvivorous >
phytoplanktivorous fish. Fischer and Dietrich (2000) explain that there are
several differences in GI tract between a carnivorous fish like rainbow
trout and planktivorous and herbivorous cyprinids like carp. Cyprinids (as
well as cichlids) possess a much longer ileum with larger surface area and
higher resorption capacities, so that carnivorous fish would accumulate
less MC, i.e. the opposite of what was found in Chinese lakes. In contrast
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Carbis et al. (1997) explain that the neutral or slightly basic conditions in
the GI of carp limit absorption of MC, since cells of cyanobacteria would
only be digested in an acid environment.

Overall no relationship between feeding guild and toxin concentrations
in fish can be pulled out from the data in Table A.1. Data from different
studies are hard to compare because toxin concentrations, exposure routes
and a host of other biotic and abiotic factors differ between sites and stud-
ies. What is clear, and this is found across studies on fish, is that concen-
trations of MC are mainly present in the gut and liver, to a somewhat lesser
extend in kidneys and gonads, and much less in muscle tissue (e.g.
Kankaanpaa et al. 2005a; Li et al. 2004; Soares et al. 2004; Malbrouck et
al. 2003; Xie et al. 2005). Microcystins are also found in fish faeces in
substantial amounts (Jang et al. 2004; Xie et al. 2005) and in pseudofaeces
of Dreissena (Babcock—Jackson et al. 2002; Pires et al. 2004). This could
expose the benthic community to cyanobacterial toxins produced in the pe-
lagic zone.

There is a surprisingly large number of studies on the presence of toxins
in macroinvertebrates, especially in bivalves (mussels and clams). In con-
trast there are very few studies that describe effects of cyanobacterial tox-
ins on these animals, perhaps because generally they seem insensitive (e.g.
Saker et al. 2004). A common theme in the studies on macroinvertebrates
is the analysis of time courses for accumulation and depuration of toxins.
Accumulation is often found to be time dependent and proceeds in an or-
derly manner. Time lagged acccumulation occurred at deeper sites in the
Baltic sea. Mussels at deep sites are primarily exposed to toxic Nodularia
towards the end of the bloom period, when filaments sink to the sediment,
where they over winter. Although mussels at deeper sites contained much
less toxin, they did accumulate some NODLN (Sipia et al. 2002). Depura-
tion from mussels is almost always found to be biphasic (Ozawa et al.
2003; Sipia et al. 2001b; Vasconcelos et al. 1995), sometimes concentra-
tions of toxin even increase in the first phase of depuration (Amorim and
Vasconcelos 1999). It has been suggested that this is a consequence of dy-
namics in production and degradation of PP to which the MC are bound
(Vasconcelos et al. 2001), but more research is needed (Ozawa et al.
2003). Although depuration is commonly judged to be rapid (e.g. Sipia et
al. 2002; Kankaanpaa et al. 2005b; Pereira et al. 2004) it is equally clear
that depuration is incomplete even after a considerable period of time. De-
puration is temperature dependent and slows down in winter, so that toxins
may even be carried on to the next spring (Ozawa et al. 2003). In for in-
stance Lake IJsselmeer this has consequences for thousands of diving
ducks that arrive in autumn. Although summer Microcystis blooms have
dispersed, the mussels (food for the ducks) still contain traces of toxins.
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Thus the mussels may be considered a vector that prolongs the time when
toxins are able to exert negative effects in that lake ecosystem. In macroin-
vertebrates hepatotoxins, but also CYN, were mainly found in the haemo-
lymph and hepatopancreas, to a lesser extend also in gonads and muscle
tissue (foot).

With respect to zooplankton we see the opposite of the macroinverte-
brates papers: there are a large number of studies on effects of cyanobacte-
rial toxins on zooplankton but much less on concentrations of toxins in the
animals. The available results suggest that concentrations are relatively
high in indiscriminately filter feeding taxa such as Daphnia (Ibelings et al.
2005; Kotak et al. 1996a; Thostrup and Christoffersen 1999), and perhaps
lower in copepods, but again there is a general lack of data. Toxins seem to
be taken up into the body of zooplankton, concentrations of toxin cannot
be explained solely by the presence of toxic cyanobacteria in the gut.

Analytical analysis methods

The standard method for analysis of hepatotoxins (MC and NODLN) is
HPLC, coupled to diode array UV detection (see Table A.1). ELISA is
frequently used because of its high sensitivity (see Spoof 2005) for pros
and cons of different methods. A drawback of ELISA is cross reactivity
with detoxication metabolites, like the conjugates of MC and GSH. These
conjugates have been shown to have a much lower toxicity (Metcalf et al.
2000). Conjugates can be detected using LC-MS, but this is still rarely un-
dertaken (however see Karlsson et al. 2003 and Sipia et al. 2002). Because
ELISA suffers from cross reativity some studies on biota in the Baltic Sea
have introduced the term TEH — total extractable hepatotoxins, which in-
cludes the biotransformation products. TEH almost invariably exceeds the
concentrations of untransformed hepatotoxins in biota — see for instance
the comparison of NODLN (analyzed on LC-MS) and TEH (ELISA) in
Kankaanpaa et al. (2005a), which differ by an order of magnitude, or
Lehtonen et al. (2003) where NODLN was < 5 % of TEH in Baltic clams.
Another important analytical issue is that of extraction of the toxins. A
large number of MC congeners — those that contain methyldehydroalanine
— covalently bind to PP in plant and animal cells; these covalently bound
MC are not extracted using standard MeOH extraction. The handful of
studies that have used Lemieux oxidation — a method that does extract co-
valently bound MC — demonstrated that a large part of the MC in biota is
covalently bound (Williams et al. 1997; Pires et al. 2004) (see Table 2 in
Havens et al, this issue). This means that almost all of the concentrations
given in Table A.1 seriously underestimate the total amount of MC present
in biota. What is unknown — and this is important — is whether all these
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studies also underestimate the bioavailability and toxicity of MC. Is cova-
lently bound MC in Daphnia still (equally) toxic to the fish that swallows
cladocerans?

Bioaccumulation

Many studies have suggested that cyanobacterial toxins bioaccumulate in
aquatic biota and that this may enhance the risk of exposure of biota higher
up in the food web (e.g. Li et al. 2004; Sipia et al. 2001a; Negri and Jones
1995). Xie et al. (2005) present data that demonstrate that MC has a gen-
eral tendency to accumulate up the food chain, with concentrations being
highest in carnivorous and lowest in herbivorous fish species. PST concen-
trations in Daphnia magna grazing on Aphanizomenon exceeded those in
the cyanobacterium (bioaccumulation factor > 1). Bioaccumulation in most
papers however use a loose definition and usually it just means that toxins
are present in biota. When a more formal — and informative — definition of
bioaccumulation, and the related processes of bioconcentration and bio-
magnification are used (see Havens et al, this issue for definitions) there is
very little evidence to support the notion of bioaccumulation of MC and
NODLN in aquatic food webs. Rather the opposite, i.e. biodilution of
hepatotoxins in the food web, is supported by the data (Karjalainen et al.
2005). Data in Table A.1 do show however that bioconcentration of
NODLN may take place. In an experimental setting two copepods and a
ciliate took up dissolved NODLN and accumulated this to concentrations
far higher than in the water (BCF ranged from 12-22). Predators of these
zooplankters and protozoa would be exposed to substantial concentrations
of toxin in their food and may suffer consequences like decreased inges-
tion rates, as was shown for pike larvae and mysid shrimps feeding on the
zooplankton (Karjalainen et al. 2005).

Biomagnification factors express the concentration of a toxin in biota as
a percentage of that in their diet. BMF for the Baltic Sea and IJsselmeer
are shown in Table 1.1. BMF in the Baltic biota and in Daphnia and Dreis-
sena from the IJsselmeer are well below 100 %, indicating that the concen-
tration was much below the concentration in the seston. Biomagnification
obviously is absent in these cases. BMF in the Baltic of Copepods and
clams are exceptionally low; only a very small part of NODLN which is
present in the cyanobacteria is taken up by these grazers. The calculation
in Table 1 of BMF for grazers of the phytoplankton is very sensitive to the
toxin content of the seston used in the calculation, and this content may be
highly variable. Values of BMF in the table should be taken as indicative
rather than absolute. The BMF of ruffe and especially smelt in the [Jssel-
meer are > 100 and seem to indicate that biomagnification of MC has
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taken place. In this case however concentrations of MC in a whole organ-
ism (like Daphnia) are compared to values for a selected organ where the
toxin specifically accumulates (the liver), and this gives a skewed repre-
sentation of biomagnification (Gray 2002). The difference in BMF be-
tween freshwater mussels in the IJsselmeer and their marine counterparts
in the Baltic is striking. The very low concentration of MC in Dreissena
led Ibelings et al. (2005) to the conclusion that the food web linked to filter
feeding mussels is hardly exposed to toxins. In contrast Kankaanpaa et al.
(2005a) concluded that in the Baltic food webs involving mussels are es-
pecially exposed to hepatotoxins. The tenfold difference in BMF supports
these apparently opposing conclusions.

Table 1. Biomagnification factors Baltic Sea and IJsselmeer (The Netherlands).
BMF were calculated as NODLN (Baltic) or MC (IJsselmeer) content in biota as a
percentage of toxin in their diet (e.g. in eiders as a % of that in mussels). For com-
parison BMF is also calculated as percentage of the concentration in the seston
(although this would only qualify as biomagnification for organisms that actually
feed on seston, like Daphnia and the mussels). Data compiled from (Engstrom—
Ost et al. 2002; Kankaanpaa et al. 2005a; Karjalainen et al in press; Lehtonen et al.
2003; Sipia et al. 2001b; Sipia et al. 2002; Sipia et al. 2004) for the Baltic sea.
BMF for the IJsselmeer have been modified from Ibelings et al. (2005). Data on
which calculation of BMF are based are taken from Table A.1.

Baltic biota BMF BMF diet IJsselmeer biota BMF BMF
seston seston  diet
Copepods 0.3 0.3 Daphnia galeata 20 20
Blue mussel (Mytilus 8.9 8.9  Zebra mussel 0.9 0.9
edulis) (Dreissena poly-
morpha)

Baltic clam (Macoma 0.6 0.6  Perch (Percia flu- 5.9 11
baltica) viatilis)
Mysid shrimp (Mysis 0.3 100  Ruffe (Gymno- 13.2 120
relicta) cephalus cernuus)
Pike larvae (Esox 0.2 59  Smelt (Osmerus 53.5 286
lucieus) eperlanus)
Sticklebacks 0.05 24
(Gasterosteus aculeatus)
Flounder (Platichthys 1.6 19
flesus)
Eider (Somateria mol- 0.8 8

lissima)
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Exposure routes

Laboratory studies

Early studies on fish (Tencalla et al. 1994; Kotak et al. 1996b) primarily
used the method which is preferred for exposure of mammals in laboratory
studies — intra—peritoneal injection. Direct injection of toxins like MC
proved to be highly toxic to fish. The effects are comparable to those seen
in mammals, but differences are seen as well. Whereas mammals die from
haemorrhagic shock following hepatocyte insult, fish die from direct liver
failure, necrosis (e.g. Malbrouck et al. 2003, Li et al 2004). The LCs, for
MC-LR in perch (1500 pg g DW™, Ibelings et al unpublished data) is well
above the LCs for mice, indicating that these fish species are less sensitive
to the toxin than warm blooded animals. Nevertheless Sipia et al. (2001a)
notes that salmon hepatocytes seem more sensitive to algal toxins than rat
hepatocytes. When MC was administered orally (up to 1150 pg MC kg™
bw given by gavage 8 times over 96 h (a total dose of 9200 pg MC kg
bw) to perch from the IJsselmeer no mortality was seen, although histopa-
thology of the livers showed that MC were having severely detrimental ef-
fects. Similar differences between IP injection and gavage can be found in
Table A.2 (e.g. Tencalla et al. 1994).

Directly from the water

In ecotoxicology there is a general assumption that uptake from the water
is a common route for aquatic vertebrates to accumulate xenobiotic sub-
stances (Karjalainen et al. 2003). Indeed some of the studies have demon-
strated direct uptake of cyanobacterial toxins from the water, even to the
extent that the concentration in biota exceeds those in the water. However,
most studies where biota are exposed to dissolved toxins have been in the
laboratory (see Table A.2) using purified toxins. These studies have proven
valuable in finding the mechanisms through which biota are affected by
cyanobacterial toxins but are less informative about the importance of up-
take of dissolved toxins in the ecosystem. A specific effect of dissolved
MC is inhibition of ATP-ase activity of Na" K~ pumps in the gills of fish
and crabs, resulting in ion imbalance (Best et al. 2003; Vinagre et al. 2003;
Zambrano and Canelo 1996). Concentrations of dissolved MC are much
increased when surface blooms of floating cyanobacteria lyse. When
cyanobacteria float to the surface they are exposed to extreme conditions,
in particular an increase in irradiance, potentially to damaging levels. Pho-
toprotective mechanisms that may protect the cells from photooxidation
are hampered by the co—occurrence of light stress and other stress factors,
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notably an increase in temperature, desiccation and depletion of inorganic
carbon (Ibelings and Maberly 1998). Lehtonen et al. (2003) suggested that
the major fate of cyanobacterial blooms in the Baltic is to disintegrate in
the water column so that very little reaches the bottom. If this were the
case exposure to dissolved toxins would be a major event. Lysis of surface
blooms is not unlikely, but we maintain that exposure of biota to high
concentrations of dissolved toxin are the exception rather than the rule be-
cause processes like mixing, adsorption to clay particles, photolysis and
bacterial degradation rapidly reduce the availability of dissolved toxins
(Ozawa et al. 2003).

Moreover it has been shown by several authors that some aquatic biota
are not sensitive to dissolved cyanobacterial toxins — e.g., brown trout
(Best et al. 2001), pike—larvae (Karjalainen et al. 2005) and Daphnia
magna (Lurling and van der Grinten 2003). Microcystins tend to be quite
water soluble and polar, and do not readily pass the lipid bilayer of mem-
branes. It is important to note however that whenever effects of purified
dissolved toxins are compared to whole cell extracts biological effects tend
to be much enhanced for the latter (Palikova et al. 1998; Oberemm et al.
1999), a possible indication of synergistic effects between MC and other
bioactive compounds in cyanobacterial cells. There are exceptions, how-
ever. For example, in 4. salina purified CYN showed a lower LCs, than
crude Cylindrospermopsis extracts, and this may indicate that unidentified
compounds in the cyanobacterial cell extracts lowered the bioavailability
of the toxin (Metcalf et al. 2002).

Via food (vectorial transport)

Feeding seems to be the most important route for exposure of aquatic biota
to cyanobacterial toxins. This seems natural for organisms that directly
feed on seston that includes cyanobacteria. Zooplankton, filter feeding bi-
valves and phytoplanktivorous fish would be among the organisms that are
directly exposed to toxins in their food (unless they manage to avoid toxic
cyanobacteria — see below ‘protective mechanisms’). For those biota that
do not feed directly on cyanobacteria, toxins must reach them via the food
web. The risk of being exposed to toxins via the food web is much in-
creased if biomagnification takes place. This is commonly found for lipo-
philic toxicants like PCB, but is less likely for hydrophilic compounds like
MC-LR. This congener has a very low octanol to water partition coeffi-
cient, but as demonstrated by Ward and Codd (1999) other variants may
have higher coefficients, and toxicity to Tetrahymena has been shown to
vary accordingly. As discussed above biomagnification of MC and
NODLN is unlikely and not substantiated by data from the field. Of the
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amount of toxin ingested with the food very little is actually taken up into
the body (e.g. 2.7 % in Daphnia in Rohrlack et al. 2005). And even the lit-
tle toxin that is actually taken up into the blood of Daphnia and trans-
ported to its organs is subject to detoxication (see later in this paper) and
excretion. These processes that dilute toxin concentration act at every step
in a food chain. Rather than biomagnification MC and other toxins may be
subject to biodilution in the foodweb. Nevertheless toxins are found at
higher trophic levels, so there must be some vectorial transport, and as will
be discussed below in sufficient quantities to have harmful effects. The
presence of toxins in grazers like the zooplankton indicate that cyanobacte-
ria are indeed ingested, despite their reputation of being hard to handle be-
cause of their large size. Indeed Work and Havens (2003) found cyanobac-
teria in the gut of all crustacean zooplankton in a large subtropical lake,
including taxa known to produce toxins such as Anabaena.

A special case of exposure via food is coprophagy, described in a study
on blue mussels (Svensen et al. 2005). A fair number of studies have ana-
lyzed toxins in the faeces of various species. Concentrations may be rela-
tively high compared to concentrations in organs and tissues, and the fae-
ces laden with toxins provide a medium for further transport of toxins in
aquatic systems, especially towards the benthic community. Examples in
Tables 1 and 2 include the faeces of silver carp and C. gibelio (Jang et al.
2004), M. galloprovincialis (Amorim and Vasconcelos 1999) as well as M.
edulis (Svensen et al. 2005), and faecal pellets of calanoid copepods (Le-
htiniemi et al. 2002).

Effects on biota

Acute vs. chronic effects

Acute effects are those that result from a single exposure to a toxin. This is
conceivable under laboratory settings or after large scale lysis of a surface
bloom. Biota in the field however will mainly be exposed repeatedly to
toxins over a long period of time. This is sub—chronic and chronic expo-
sure (definitions in Havens et al., this issue). An example of a study of
acute exposure is that by Kankaanpaa et al. (2002) on sea trout. The fish
were exposed to a single bolus of toxic Nodularia and time dependent ac-
cumulation / depuration of NODLN was coupled to the analysis of damage
and recovery of the liver. An example of a sub—chronic exposure study
(i.e. on a time scale intermediate between acute and chronic) is that by
Pinho et al. (2003) where estuarine crabs were exposed daily for 4-7 d to
cell extracts from toxic Microcystis or the exposure of carp to Microcystis
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during 28d (Li et al. 2004). Experimental chronic exposure studies where
biota are exposed to toxins for the greater part of their lifespan have — nec-
essarily — been restricted to organisms with short generation times, espe-
cially zooplankton. There are a fair number of studies in which the effects
of cyanobacterial toxins on the life-history of Daphnia have been studied.
Examples are the studies by (Lurling 2003) and (Hietala et al. 1997). Some
of the bivalve studies (accumulation / depuration) lasted for several weeks
(e.g., Pires et al. 2004 and Bury et al. 1996) exposed brown trout to MC—
LR for a period of 63d, but the great majority of data on chronic exposure
to toxic cyanobacteria come from field studies where animals are exposed
to toxic cyanobacteria via natural routes (many examples in Tables A.1
and A.2) during extended periods of time.

Overall Table A.2 indicates wide ranging effects of different cyanobac-
terial toxins on various aquatic organisms. Effects vary from mortality to
subtle changes in behavior. Effects in fish include changes in liver enzy-
mology, liver damage and ionic imbalance. Effects of cyanobacterial tox-
ins on the embryonic development of fishes have been studied in two spe-
cies: zebra fish and loach. Whereas immersion of zebra fish embryos in a
solution of purified MC did not result in morphological changes except at
the very highest concentration (Oberemm et al 1999), embryonic develop-
ment of loach was affected by exposure to MC (Liu et al. 2002). In the
study on zebra fish it was seen — like in studies on other biota — that crude
cell extracts had much stronger effects, resulting in malformations of the
fishes.

Effect studies are especially rich in the zooplankton literature. In Ta-
ble A.2 it can be seen that effects on zooplankton vary from feeding inhibi-
tion to reduced reproduction, growth and mortality. Feeding inhibition may
actually serve as a protective mechanism, and there is some evidence that
especially species that are highly susceptible to MC may protect them-
selves by strong inhibition of the intake of cyanobacteria (Demott 1999).
Studies also have shown that zooplankton is relatively insensitive to dis-
solved toxins (Demott et al. 1991; Lurling and van der Grinten 2003) so
that feeding inhibition may indeed be very effective in preventing harmful
exposure to the toxins. A complicating factor in zooplankton studies is that
also ‘non—toxic’ cyanobacteria induce effects like reduced growth and re-
production. Cyanobacteria are generally believed to be food of low quality
to zooplankton, especially Daphnia, so that direct toxic effects can not al-
ways be separated from the effect of insufficient food of good quality
(LaurenMaatta et al. 1997). Experimental tests in which toxicity effects
were separated from food effects — by adding a sufficient amount of high
quality food like the green alga Scenedesmus — clearly demonstrate how-
ever that nutritional insufficiency of Microcystis cannot be solely respon-
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sible for the effects on Daphnia. Negative effects on survival, growth and
population development persisted even when green algae were added.
Moreover this was true even when a Microcystis mutant was used that no
longer produces MC (Lurling 2003). Hence the author concluded that
harmful effects by Microcystis cannot be the result of MC only. Feeding
inhibition (starvation) and unknown bioactive compounds must also play a
part.
The studies by Rohrlack and co—workers (Rohrlack et al. 1999b; Rohr-
lack et al. 2004; Rohrlack et al. 2005) enable direct insight into the effects
of MC on Daphnia because the wild type Microcystis and its mutant only
differ in their capacity to produce MC. Several interesting observations
were made. Although MC was not responsible for feeding inhibition — the
mutant had an equally strong effect — clearly MC had direct toxic effects.
Visible first symptoms of MC poisoning included an inhibition of move-
ments of thoracic legs, mandibles, foregut, second antennae, as well as
stimulation of gut muscles leading to a permanent contraction of the mid-
gut. These effects became apparent as soon as MC was taken up into the
blood. Contraction of the midgut interferes with digestion, nutrient assimi-
lation and uptake of ions. Eventually MC resulted in a breakdown of
Daphnia metabolism, exhaustion and eventually death. In nature intake of
microcystins will be modulated by various factors that were not considered
in the study by Rohrlack et al. (2005) like Microcystis colony size, pres-
ence of alternative food, temperature or condition of the animal (see sec-
tion below on ‘modulating factors’).

Dose effect relationships

In studies on Baltic Sea flounder as well as on fish from the [Jsselmeer no
relationship could be detected between liver histopathology and toxin con-
centrations (Ibelings et al 2005.; Kankaanpaa et al. 2005a). The lesions that
are seen in fish livers caught from systems supporting dense blooms of
cyanobacteria may be attributed to hepatotoxin exposure, but other factors
like liver parasites and anthropogenic pollutants will also play a part.
Kankaanpaa et al. (2005a) concluded that liver histopathology can not be
used as a reliable bioindicator of exposure to cyanobacterial toxins. A
complicating factor is the dynamic nature of liver damage and recovery.
The acute exposure study mentioned earlier where flounders were given a
single dose of toxin (Kankaanpaa et al. 2005a) demonstrated that damage
is transient, and recovery from liver damage is rapid (on the order of days).
Many studies have failed to relate effects to concentrations of toxin. Egg
production of Daphnia in the 1Jsselmeer had no relationship with toxin
content of the cyanobacteria in the lake (Ibelings et al. 2005). According to



692 B.W. Ibelings and K.E. Havens

Rohrlack et al. (1999) it may not be the presence of toxins in the seston but
the actual intake of toxins that matters. Daphnia species that were pre-
sumed to differ in susceptibility to MC may actually be equally susceptible
— where they actually differ may be in their ingestion rate of toxic Micro-
cystis cells. Rohrlack et al. (2004) established a clear relationship between
MC ingestion rate and LTs, (survival time) of Daphnia. Despite all the
complicating factors, significant dose—effect relationships have been found
and are included in Table A.2. Another example is the dose (and time) de-
pendent mortality in brine shrimp exposed to CYN and MC (Metcalf et al.
2002).

Protective mechanisms

Aquatic biota are by no means defenseless against toxic cyanobacteria.
Blooms of toxic Nodularia have been around for at least 7000 years in the
Baltic, giving other biota sufficient time to adapt to these nuisance cyano-
bacteria (Bianchi et al. 2000). Several studies indicate that species which
are most frequently exposed to the toxins have the highest physiological
tolerance. Baltic shrimp are less sensitive than fish larvae, but these larvae
only feed on phytoplankton during the first stages of their life. Baltic co-
pepods feed upon and ingest toxic Nodularia and they survive and repro-
duce without apparent harmful effects of the toxins (Engstrom et al. 2000).
Where Thamnocephalus exhibited reduced survival after grazing upon
Planktothrix filaments, other zooplankton — naturally co—existing with
toxic cyanobacteria— were unaffected (Kurmayer and Juttner 1999).

Sessile organisms like mussels cannot move away from cyanobacteria,
but zooplankton and fish may migrate to parts of the system where concen-
trations of cyanobacteria are low, as has been suggested for fish in the Bal-
tic (Karjalainen et al. 2005). Moreover zooplankton, mussels and fish may
temporarily stop feeding when toxic cyanobacteria are present and avoid
ingestion in this way. If toxic cyanobacteria can not be avoided and cells
are indeed ingested, very little of the toxin present may actually be taken
up into the body. Mucoid cyanobacteria like Microcystis are resistant to
digestion, and there are barriers for the uptake of MC across the gut epithe-
lium into the blood (Fischer and Dietrich 2000). Rohrlack et al. (2005)
however showed that presence of Microcystis in the midgut of Daphnia
caused the epithelium to loose cohesion. Cells loose contact with each
other and this may facilitate the uptake of MC into the blood. Microcystin
was transported by the blood to various organs, where beat rates were
slowed down, until finally Daphnia died. Although both the MC producing
wild type and the mutant (that no longer is capable of MC production) af-
fected cohesion of the epithelium, beat rates were only affected by the MC
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producing strain, a clear demonstration that MC — if taken up into the
blood — is indeed highly toxic to Daphnia.

Feeding inhibition in the presence of toxic cyanobacteria is an efficient
means to prevent ingestion of the toxins. However the avoidance of toxins
must be balanced with the risk of starvation. Demott (1999) found that in
Dahnia magna exposure to toxic Microcystis in a mixture with Scenedes-
mus resulted in a rapid feeding inhibition, but feeding recovered when ex-
posure was continued. DeMott concluded that this pattern of inhibition and
recovery may balance the benefits of reduced ingestion of toxin with the
disadvantage of a reduced food intake. In an environment with a patchy
occurrence of toxic cyanobacteria feeding inhibition would be adaptive if
the environment could be sensed correctly (chemical cues) and animals are
able to recover quickly from inhibition in the absence of toxic strains.

Detoxication and oxidative stress

Another important process is detoxication of MC, which now has been
documented in many aquatic biota, including several animals and macro-
phytes (Pflugmacher 2004). Metabolic breakdown of MC results in conju-
gate formation, amongst others with GSH. The formation of these conju-
gates is catalyzed by the enzyme GST, which has a microsomal and a
cytosolic fraction. The activity of ¢cGST has been demonstrated to increase
after exposure to MC in zebra fish (Wiegand et al. 1999) and brine shrimp
(Beattie et al. 2003), although exceptions have also been described, where
activity of the enzyme remained unchanged, e.g. in goldfish (Malbrouck et
al. 2004) and carp (Li et al. 2003). GST activity (cGST and mGST) also
increased in Daphnia after exposure to CYN and an unidentified hepato-
toxin (Nogueira et al. 2004). The MC-GSH conjugates have a much re-
duced toxicity and may be subject to enhanced excretion. Detoxication
thus is a significant mechanism that protects biota to acute toxic effects of
MC, as long as the capacity for detoxication is not exceeded. As a result of
detoxication the cellular GSH pool is depleted and this exposes cells to
oxidative stress through the formation of ROS like hydrogen peroxide. Or-
ganisms have a wide range of protective mechanisms to oxidative stress,
including enzymes like SOD, CAT and GSH-reductase. The latter enzyme
needs GSH as a co—substrate and its activity may be reduced when GSH is
depleted through its conjugation with MC. Thus exposure to MC may have
damaging effects in direct (inhibition of PP) and indirect ways (disbalance
in ROS). Jos et al. (2005) showed that crushed cyanobacterial cells (MC
released) resulted in enhanced oxidative stress resulting in lipid peroxida-
tion, despite the fact that also levels of defensive enzymes were enhanced.
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Studies by several authors in Table A.2 (i.e. Best et al. 2002) indicate
that LPS (which are present on the cell-surface of cyanobacteria and on
bacteria associated with cyanobacterial blooms) interfere with the detoxi-
cation process. In the study by Best and others GST activity in zebra fish
was reduced when MC and LPS were offered in combination. Since LPS
from different bacterial sources are always present in the aquatic environ-
ment (although not all LPS from different sources equally disturbed de-
toxication when tested) it would be rewarding to study the process of de-
toxication in the field. Another study (Best et al. 2003) demonstrated that
LPS stimulate drinking in fish, the increased volume of water in the gut
potentially increases the opportunity for uptake of toxins (including MC)
from the water and promotes osmoregulatory imbalance.

Modulating factors

A common theme in much of what has been discussed in this paper is that
of modulating factors. The effects that these cyanobacterial toxins have on
aquatic biota are seldom straightforward but are modulated by factors in
the environment or the status of biota themselves. Examples of modulating
factors include condition of the animals, temperature and pre—acclimation
/adaptation to cyanobacterial toxins. Hepatotoxicity of MC—LR has been
shown to increase in fasted compared to fed animals (Malbrouck et al.
2004). Fasted goldfish showed a more severe and rapid inhibition of PP,
and this may be related to differences in the glycogen content of the livers
and the rate of MC removal from the body via the bilary excretion system.
The tolerance of Daphnia pulex to toxic Microcystis was shown to be tem-
perature dependent (Hietala et al. 1997) and decreased with higher tem-
peratures. Adaptation to toxic cyanobacteria may play an important role
too. Daphnia from locations where it is repeatedly exposed to toxic blooms
would develop a higher tolerance to the toxins (Gustafson and Hansson
2004). Whether this is truly an adaptive evolutionary response remains to
be tested since adaptation during 4—6 generations in the experiments by
Gustafson and Hansson (2004) seem insufficient (although adaptation in
Daphnia has indeed been shown to be a rapid process (e.g. Ebert et al.
2000). The essential message from their work is clear however: whenever
the ecological effects of cyanobacterial toxins on biota are considered it is
important to understand the history of the species involved. Modulating
factors are an important reason why it is so hard to generalize the effects
toxic cyanobacteria have on the biota in their environment.
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Knowledge gaps

Throughout this paper remarks have been made about knowledge gaps that
limit our understanding of the ‘true’ ecological effects of cyanobacterial
toxins. At this point there is no need however to list those gaps exten-
sively, since this is the subject of the paper by Havens et al, this issue. To
summarize their main findings, Havens et al recommend further study on
the following subjects:

Studies at the whole community level in the presence vs. absence of
cyanobacterial toxins;

Studies that mitigate the bias towards microcystin, especially MC-LR,
i.e. more knowledge is needed about ecological effects of toxins like
CYN;

Studies into synergistic effects of combinations of cyanobacterial toxins
and of cyanobacterial toxins and other bioactive compounds from
cyanobacterial cells;

Studies in which biota are exposed to toxins under environmentally
relevant conditions (synergistic effects with other stressors like
temperature, low oxygen etc);

More emphasis should be placed into (sub)chronic studies having sub—
lethal effects, including those on behavior or genotoxicty; these may be
more relevant than acute lethal effects, and more knowledge is needed
here;

What is the fate of toxins produced by cyanobacteria in the ecosystem?;
what is for instance the role of detoxication and covalent binding of MC
on transfer of toxins in the foodweb?

Effects of toxins on benthic communities are not well understood;

In which way and to what extend does toxicity of cyanobacteria
interfere with lake restoration?

Conclusions

The qualitative meta—analysis identifies the following general patterns for
major groups of aquatic biota (birds, fish, macroinvertebrates and zoo-
plankton).
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Birds. On basis of the limited number of studies on the role of toxic
cyanobacteria on waterfowl we conclude that aquatic birds are at risk of
cyanobacterial toxicosis. Anatoxins seem to play a relatively large role,
they are often present when dead birds are found and the symptoms in dis-
eased birds indicate a neurotoxin. Birds may be at high risk because they
may directly feed on floating scum of cyanobacteria (personal observation)
and are warm blooded animals, like the mammals which have been shown
to be sensitive to cyanobacterial toxins in laboratory studies. A disease that
must be mentioned here is avian vacuolar myelinopathy (AVM), which is a
neurologic disorder primarily affecting bald eagles (Haliaeetus leuco-
cephalus) and American coots (Fulica americana). The agent of this dis-
ease is an uncharacterized neurotoxin produced by a novel cyanobacterial
epiphyte of the order Stigonematales (Wilde et al. 2005).

Fish. On basis of their study of common carp exposed to Microcystis, Li et
al. (2005) conclude that fish kills during blooms of cyanobacteria can be
assumed to result from extensive liver damage. Zambrano and Canelo
(1996) on the other hand state that blockage of the gill activity could be the
cause of mass mortalities during blooms of Microcystis. Both papers have
in common that they put forward that cyanobacterial toxicosis can directly
be responsible for the death of fish. We maintain that this is unlikely.
Studying the collected data in Table 2 it seems doubtful whether naturally
occurring concentrations of cyanobacterial toxins (either dissolved in the
water or contained in the cell) are sufficiently high to be directly lethal.
Again, generalizations are difficult because there appear to be important
differences between fish species. Fischer and Dietrich (2000) related the
capacity for uptake of toxins to the morphology of the GI. Perhaps combi-
nations of stress factors that co—occur during blooms of toxic cyanobacte-
ria (high temperature and pH, enhanced levels of ammonia, low oxygen in
addition to cyanobacterial toxins) are more likely to cause fish mortality.
Important sub—lethal effects of cyanobacterial toxins in fish are more than
probable, however. Harmful effects have been seen on embryonic devel-
opment, on growth of juvenile fish and on adult species. Several organs
may be affected (e.g., kidney, heart, gonads), but the liver is the main tar-
get. Several studies have shown that around 50 % of fish caught from lakes
or estuaries that support cyanobacterial blooms show hepatic lesions that
could — partially — be the result of exposure to cyanobacterial toxins.

Macroinvertebrates. Most of the studies on bivalves agree that these ani-
mals are quite resistant to different cyanobacterial toxins. This has been
shown for freshwater and marine mussels and clams and has been found
for hepatotoxins, neurotoxins and CYN. More attention is given to the po-
tential accumulation of toxins in mussels, and especially the risk of vecto-
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rial transport to predators (including man). However depuration studies
have shown that mussels clear toxins fairly rapidly, so that there is little re-
tention. Nevertheless depuration is seldom complete, and low concentra-
tions may even be carried through to the start of the next cyanobacterial
growing season.

Zooplankton. Whenever the ecological significance of cyanobacterial tox-
ins is discussed the primary suggestion is often that they deter grazing by
zooplankton. Highly selective grazers like copepods would exert a stronger
selection pressure than less selective grazers like Daphnhia, but the study
by Kurmayer and Juttner (1999) shows that Daphnia may play a persisting
role in the evolution of MC production (see also studies by Jang et al.
2004) who demonstrated that MC concentrations increased up to five—fold
when Microcystis was exposed to filtered zooplankton growth medium
(Daphnia and Moina spp). The literature concerning the effects of toxic
cyanobacteria on zooplankton is extensive (Table A.2 only shows a selec-
tion) but there appear to be many contradictions. This is not surprising
since there are numerous complicating factors. Furthermore it is now well
established that not all toxic effects can be traced back to the well known
cyanobacterial toxins like MC. Although work by Rohrlack et al. (2005)
has proven decisively that microcystins are toxic, the same work has
shown that also the mutant incapable of producing MC has negative effects
like inhibition of feeding. Effects of cyanobacterial blooms also exert ef-
fects at the community level. Zooplankton community composition may
change towards dominance of smaller cladocerans which have a lower
grazing pressure. In this way cyanobacterial blooms may stabilize the tur-
bid state on which some of the cyanobacteria like Planktothrix agardhii
depend (Scheffer et al. 1997) and interfere with lake restoration. The spe-
cific contribution of toxins — as opposed to general negative effects of
cyanobacteria — at this high level of integration is unclear however.
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